Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PNP: Fast Path Ensemble Method for Movie Design (1611.02388v1)

Published 8 Nov 2016 in cs.SI

Abstract: How can we design a product or movie that will attract, for example, the interest of Pennsylvania adolescents or liberal newspaper critics? What should be the genre of that movie and who should be in the cast? In this work, we seek to identify how we can design new movies with features tailored to a specific user population. We formulate the movie design as an optimization problem over the inference of user-feature scores and selection of the features that maximize the number of attracted users. Our approach, PNP, is based on a heterogeneous, tripartite graph of users, movies and features (e.g., actors, directors, genres), where users rate movies and features contribute to movies. We learn the preferences by leveraging user similarities defined through different types of relations, and show that our method outperforms state-of-the-art approaches, including matrix factorization and other heterogeneous graph-based analysis. We evaluate PNP on publicly available real-world data and show that it is highly scalable and effectively provides movie designs oriented towards different groups of users, including men, women, and adolescents.

Citations (7)

Summary

We haven't generated a summary for this paper yet.