Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks (1611.02345v3)

Published 7 Nov 2016 in cs.LG, cs.NE, and stat.ML

Abstract: Modern convolutional networks, incorporating rectifiers and max-pooling, are neither smooth nor convex; standard guarantees therefore do not apply. Nevertheless, methods from convex optimization such as gradient descent and Adam are widely used as building blocks for deep learning algorithms. This paper provides the first convergence guarantee applicable to modern convnets, which furthermore matches a lower bound for convex nonsmooth functions. The key technical tool is the neural Taylor approximation -- a straightforward application of Taylor expansions to neural networks -- and the associated Taylor loss. Experiments on a range of optimizers, layers, and tasks provide evidence that the analysis accurately captures the dynamics of neural optimization. The second half of the paper applies the Taylor approximation to isolate the main difficulty in training rectifier nets -- that gradients are shattered -- and investigates the hypothesis that, by exploring the space of activation configurations more thoroughly, adaptive optimizers such as RMSProp and Adam are able to converge to better solutions.

Citations (29)

Summary

We haven't generated a summary for this paper yet.