Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Urban MV and LV Distribution Grid Topology Estimation via Group Lasso (1611.01845v2)

Published 6 Nov 2016 in stat.ML, cs.SY, and math.OC

Abstract: The increasing penetration of distributed energy resources poses numerous reliability issues to the urban distribution grid. The topology estimation is a critical step to ensure the robustness of distribution grid operation. However, the bus connectivity and grid topology estimation are usually hard in distribution grids. For example, it is technically challenging and costly to monitor the bus connectivity in urban grids, e.g., underground lines. It is also inappropriate to use the radial topology assumption exclusively because the grids of metropolitan cities and regions with dense loads could be with many mesh structures. To resolve these drawbacks, we propose a data-driven topology estimation method for MV and LV distribution grids by only utilizing the historical smart meter measurements. Particularly, a probabilistic graphical model is utilized to capture the statistical dependencies amongst bus voltages. We prove that the bus connectivity and grid topology estimation problems, in radial and mesh structures, can be formulated as a linear regression with a least absolute shrinkage regularization on grouped variables (\textit{group lasso}). Simulations show highly accurate results in eight MV and LV distribution networks at different sizes and 22 topology configurations using PG&E residential smart meter data.

Citations (13)

Summary

We haven't generated a summary for this paper yet.