Isotonized smooth estimators of a monotone baseline hazard in the Cox model (1611.01506v2)
Abstract: We consider two isotonic smooth estimators for a monotone baseline hazard in the Cox model, a maximum smooth likelihood estimator and a Grenander-type estimator based on the smoothed Breslow estimator for the cumulative baseline hazard. We show that they are both asymptotically normal at rate $n{m/(2m+1)}$, where $m\geq 2$ denotes the level of smoothness considered, and we relate their limit behavior to kernel smoothed isotonic estimators studied in Lopuha\"a and Musta (2016). It turns out that the Grenander-type estimator is asymptotically equivalent to the kernel smoothed isotonic estimators, while the maximum smoothed likelihood estimator exhibits the same asymptotic variance but a different bias. Finally, we present numerical results on pointwise confidence intervals that illustrate the comparable behavior of the two methods.