Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of vectorial martingale optimal transportations and duality (1611.01496v4)

Published 4 Nov 2016 in math.PR, math.AP, and math.OC

Abstract: The theory of Optimal Transport (OT) and Martingale Optimal Transport (MOT) were inspired by problems in economics and finance and have flourished over the past decades, making significant advances in theory and practice. MOT considers the problem of pricing and hedging of a financial instrument, referred to as an option, assuming its payoff depends on a single asset price. In this paper we introduce Vectorial Martingale Optimal Transport (VMOT) problem, which considers the more general and realistic situation in which the option payoff depends on multiple asset prices. We address this problem of pricing and hedging given market information -- described by vectorial marginal distributions of underlying asset prices -- which is an intimately relevant setup in the robust financial framework. We establish that the VMOT problem, as an infinite-dimensional linear programming, admits an optimizer for its dual program. Such existence result of dual optimizers is significant for several reasons: the dual optimizers describe how a person who is liable for an option payoff can formulate optimal hedging portfolios, and more importantly, they can provide crucial information on the geometry of primal optimizers, i.e. the VMOTs. As an illustration, we show that multiple martingales given marginals must exhibit an extremal conditional correlation structure whenever they jointly optimize the expectation of distance-type cost functions.

Summary

We haven't generated a summary for this paper yet.