Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible Bayesian additive joint models with an application to type 1 diabetes research (1611.01485v2)

Published 4 Nov 2016 in stat.ME and stat.AP

Abstract: The joint modeling of longitudinal and time-to-event data is an important tool of growing popularity to gain insights into the association between a biomarker and an event process. We develop a general framework of flexible additive joint models that allows the specification of a variety of effects, such as smooth nonlinear, time-varying and random effects, in the longitudinal and survival parts of the models. Our extensions are motivated by the investigation of the relationship between fluctuating disease-specific markers, in this case autoantibodies, and the progression to the autoimmune disease type 1 diabetes. By making use of Bayesian P-splines we are in particular able to capture highly nonlinear subject-specific marker trajectories as well as a time-varying association between the marker and the event process allowing new insights into disease progression. The model is estimated within a Bayesian framework and implemented in the R-package bamlss.

Summary

We haven't generated a summary for this paper yet.