Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Half-integral linkages in highly connected directed graphs (1611.01004v1)

Published 3 Nov 2016 in math.CO and cs.DS

Abstract: We study the half-integral $k$-Directed Disjoint Paths Problem ($\tfrac12$kDDPP) in highly strongly connected digraphs. The integral kDDPP is NP-complete even when restricted to instances where $k=2$, and the input graph is $L$-strongly connected, for any $L\geq 1$. We show that when the integrality condition is relaxed to allow each vertex to be used in two paths, the problem becomes efficiently solvable in highly connected digraphs (even with $k$ as part of the input). Specifically, we show that there is an absolute constant $c$ such that for each $k\geq 2$ there exists $L(k)$ such that $\tfrac12$kDDPP is solvable in time $O(|V(G)|c)$ for a $L(k)$-strongly connected directed graph $G$. As the function $L(k)$ grows rather quickly, we also show that $\tfrac12$kDDPP is solvable in time $O(|V(G)|{f(k)})$ in $(36k3+2k)$-strongly connected directed graphs. We also show that for each $\epsilon<1$ deciding half-integral feasibility of kDDPP instances is NP-complete when $k$ is given as part of the input, even when restricted to graphs with strong connectivity $\epsilon k$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Katherine Edwards (13 papers)
  2. Irene Muzi (10 papers)
  3. Paul Wollan (30 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.