Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform rectifiability from Carleson measure estimates and $\varepsilon$-approximability of bounded harmonic functions (1611.00264v3)

Published 1 Nov 2016 in math.CA and math.AP

Abstract: Let $\Omega\subset\mathbb R{n+1}$, $n\geq1$, be a corkscrew domain with Ahlfors-David regular boundary. In this paper we prove that $\partial\Omega$ is uniformly $n$-rectifiable if every bounded harmonic function on $\Omega$ is $\varepsilon$-approximable or if every bounded harmonic function on $\Omega$ satisfies a suitable square-function Carleson measure estimate. In particular, this applies to the case when $\Omega=\mathbb R{n+1}\setminus E$ and $E$ is Ahlfors-David regular. Our results solve a conjecture posed by Hofmann, Martell, and Mayboroda in a recent work where they proved the converse statements. Here we also obtain two additional criteria for uniform rectifiability. One is given in terms of the so-called "$S<N$" estimates, and another in terms of a suitable corona decomposition involving harmonic measure.

Summary

We haven't generated a summary for this paper yet.