Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy conservation in the 3D Euler equations on $\mathbb{T}^2\times \mathbb{R}_+$ (1611.00181v2)

Published 1 Nov 2016 in math.AP

Abstract: The aim of this paper is to prove energy conservation for the incompressible Euler equations in a domain with boundary. We work in the domain $\mathbb{T}2\times\mathbb{R}_+$, where the boundary is both flat and has finite measure. However, first we study the equations on domains without boundary (the whole space $\mathbb{R}3$, the torus $\mathbb{T}3$, and the hybrid space $\mathbb{T}2\times\mathbb{R}$). We make use of some of the arguments of Duchon & Robert ({\it Nonlinearity} {\bf 13} (2000) 249--255) to prove energy conservation under the assumption that $u\in L3(0,T;L3(\mathbb{R}3))$ and one of the two integral conditions \begin{equation*} \lim_{|y|\to 0}\frac{1}{|y|}\intT_0\int_{\mathbb{R}3} |u(x+y)-u(x)|3\,d x\,d t=0 \end{equation*} or \begin{equation*} \int_0T\int_{\mathbb{R}3}\int_{\mathbb{R}3}\frac{|u(x)-u(y)|3}{|x-y|{4+\delta}}\,d x\,d y<\infty,\qquad\delta>0, \end{equation*} the second of which is equivalent to requiring $u\in L3(0,T;W{\alpha,3}(\mathbb{R}3))$ for some $\alpha>1/3$. We then use the first of these two conditions to prove energy conservation for a weak solution $u$ on $D_+:=\mathbb{T}2\times \mathbb{R}+$: we extend $u$ a solution defined on the whole of $\mathbb{T}2\times\mathbb{R}$ and then use the condition on this domain to prove energy conservation for a weak solution $u\in L3(0,T;L3(D+))$ that satisfies \begin{equation*} \lim_{|y|\to 0} \frac{1}{|y|}\int{T}{0}\iint{\mathbb{T}2}\int\infty_{|y|}|u(t,x+y)-u(t,x)|3 \,d x_3 \,d x_1 \,d x_2 \,d t=0, \end{equation*} and certain continuity conditions near the boundary $\partial D_+={x_3=0}$.

Summary

We haven't generated a summary for this paper yet.