Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation (1610.09934v2)

Published 31 Oct 2016 in math.NA

Abstract: We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean-Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $\mathrm{TOL}$, is $\mathcal O\left({\mathrm{TOL}{-3}}\right)$ when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of $\mathcal O\left(\mathrm{TOL}{-2}\log(\mathrm{TOL}{-1})2\right)$. Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.

Summary

We haven't generated a summary for this paper yet.