Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compact Deep Convolutional Neural Networks With Coarse Pruning (1610.09639v1)

Published 30 Oct 2016 in cs.LG and cs.NE

Abstract: The learning capability of a neural network improves with increasing depth at higher computational costs. Wider layers with dense kernel connectivity patterns furhter increase this cost and may hinder real-time inference. We propose feature map and kernel level pruning for reducing the computational complexity of a deep convolutional neural network. Pruning feature maps reduces the width of a layer and hence does not need any sparse representation. Further, kernel pruning converts the dense connectivity pattern into a sparse one. Due to coarse nature, these pruning granularities can be exploited by GPUs and VLSI based implementations. We propose a simple and generic strategy to choose the least adversarial pruning masks for both granularities. The pruned networks are retrained which compensates the loss in accuracy. We obtain the best pruning ratios when we prune a network with both granularities. Experiments with the CIFAR-10 dataset show that more than 85% sparsity can be induced in the convolution layers with less than 1% increase in the missclassification rate of the baseline network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sajid Anwar (2 papers)
  2. Wonyong Sung (33 papers)
Citations (54)