Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Breast Cancer using a Compressive Sensing Unmixing Algorithm (1610.09386v1)

Published 28 Oct 2016 in cs.CV and math.OC

Abstract: Traditional breast cancer imaging methods using microwave Nearfield Radar Imaging (NRI) seek to recover the complex permittivity of the tissues at each voxel in the imaging region. This approach is suboptimal, in that it does not directly consider the permittivity values that healthy and cancerous breast tissues typically have. In this paper, we describe a novel unmixing algorithm for detecting breast cancer. In this approach, the breast tissue is separated into three components, low water content (LWC), high water content (HWC), and cancerous tissues, and the goal of the optimization procedure is to recover the mixture proportions for each component. By utilizing this approach in a hybrid DBT / NRI system, the unmixing reconstruction process can be posed as a sparse recovery problem, such that compressive sensing (CS) techniques can be employed. A numerical analysis is performed, which demonstrates that cancerous lesions can be detected from their mixture proportion under the appropriate conditions.

Summary

We haven't generated a summary for this paper yet.