Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Classification Rates under Refined Margin Conditions (1610.09109v3)

Published 28 Oct 2016 in math.ST and stat.TH

Abstract: In this paper we present a simple partitioning based technique to refine the statistical analysis of classification algorithms. The core of our idea is to divide the input space into two parts such that the first part contains a suitable vicinity around the decision boundary, while the second part is sufficiently far away from the decision boundary. Using a set of margin conditions we are then able to control the classification error on both parts separately. By balancing out these two error terms we obtain a refined error analysis in a final step. We apply this general idea to the histogram rule and show that even for this simple method we obtain, under certain assumptions, better rates than the ones known for support vector machines, for certain plug-in classifiers, and for a recently analyzed tree based adaptive-partitioning ansatz. Moreover, we show that a margin condition which sets the critical noise in relation to the decision boundary makes it possible to improve the optimal rates proven for distributions without this margin condition.

Summary

We haven't generated a summary for this paper yet.