Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logarithmic Query Complexity for Approximate Nash Computation in Large Games (1610.08906v1)

Published 27 Oct 2016 in cs.GT and cs.DS

Abstract: We investigate the problem of equilibrium computation for "large" $n$-player games. Large games have a Lipschitz-type property that no single player's utility is greatly affected by any other individual player's actions. In this paper, we mostly focus on the case where any change of strategy by a player causes other players' payoffs to change by at most $\frac{1}{n}$. We study algorithms having query access to the game's payoff function, aiming to find $\epsilon$-Nash equilibria. We seek algorithms that obtain $\epsilon$ as small as possible, in time polynomial in $n$. Our main result is a randomised algorithm that achieves $\epsilon$ approaching $\frac{1}{8}$ for 2-strategy games in a {\em completely uncoupled} setting, where each player observes her own payoff to a query, and adjusts her behaviour independently of other players' payoffs/actions. $O(\log n)$ rounds/queries are required. We also show how to obtain a slight improvement over $\frac{1}{8}$, by introducing a small amount of communication between the players. Finally, we give extension of our results to large games with more than two strategies per player, and alternative largeness parameters.

Citations (5)

Summary

We haven't generated a summary for this paper yet.