Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring individual attributes from search engine queries and auxiliary information (1610.08442v1)

Published 26 Oct 2016 in cs.IR

Abstract: Internet data has surfaced as a primary source for investigation of different aspects of human behavior. A crucial step in such studies is finding a suitable cohort (i.e., a set of users) that shares a common trait of interest to researchers. However, direct identification of users sharing this trait is often impossible, as the data available to researchers is usually anonymized to preserve user privacy. To facilitate research on specific topics of interest, especially in medicine, we introduce an algorithm for identifying a trait of interest in anonymous users. We illustrate how a small set of labeled examples, together with statistical information about the entire population, can be aggregated to obtain labels on unseen examples. We validate our approach using labeled data from the political domain. We provide two applications of the proposed algorithm to the medical domain. In the first, we demonstrate how to identify users whose search patterns indicate they might be suffering from certain types of cancer. In the second, we detail an algorithm to predict the distribution of diseases given their incidence in a subset of the population at study, making it possible to predict disease spread from partial epidemiological data.

Citations (26)

Summary

We haven't generated a summary for this paper yet.