Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiently estimating the error distribution in nonparametric regression with responses missing at random (1610.08360v1)

Published 26 Oct 2016 in stat.ME

Abstract: This article considers nonparametric regression models with multivariate covariates and with responses missing at random. We estimate the regression function with a local polynomial smoother. The residual-based empirical distribution function that only uses complete cases, i.e. residuals that can actually be constructed from the data, is shown to be efficient in the sense of H\'ajek and Le Cam. In the proofs we derive, more generally, the efficient influence function for estimating an arbitrary linear functional of the error distribution; this covers the distribution function as a special case. We also show that the complete case residual-based empirical distribution function admits a functional central limit theorem. The article concludes with a small simulation study investigating the performance of the complete case residual-based empirical distribution function.

Summary

We haven't generated a summary for this paper yet.