Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On SL(2;R) symmetry in nonlinear electrodynamics theories (1610.07790v2)

Published 25 Oct 2016 in hep-th

Abstract: Recently, it has been observed that the Noether-Gaillard-Zumino (NGZ) identity holds order by order in $\alpha'$ expansion in nonlinear electrodynamics theories as Born-Infeld (BI) and Bossard-Nicolai (BN). The nonlinear electrodynamics theory that couples to an axion field is invariant under the $SL(2,R)$ duality in all orders of $\alpha'$ expansion in the Einstein frame. In this paper we show that there are the $SL(2,R)$ invariant forms of the energy momentum tensors of axion-nonlinear electrodynamics theories in the Einstein frame. These $SL(2,R)$ invariant structures appear in the energy momentum tensors of BI and BN theories at all orders of $\alpha'$ expansion. The $SL(2,R)$ symmetry appears in the BI and BN Lagrangians as a multiplication of Maxwell Lagrangian and a series of $SL(2,R)$ invariant structures.

Summary

We haven't generated a summary for this paper yet.