Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gopakumar-Vafa invariants via vanishing cycles (1610.07303v4)

Published 24 Oct 2016 in math.AG and hep-th

Abstract: In this paper, we propose an ansatz for defining Gopakumar-Vafa invariants of Calabi-Yau threefolds, using perverse sheaves of vanishing cycles. Our proposal is a modification of a recent approach of Kiem-Li, which is itself based on earlier ideas of Hosono-Saito-Takahashi. We conjecture that these invariants are equivalent to other curve-counting theories such as Gromov-Witten theory and Pandharipande-Thomas theory. Our main theorem is that, for local surfaces, our invariants agree with PT invariants for irreducible one-cycles. We also give a counter-example to the Kiem-Li conjectures, where our invariants match the predicted answer. Finally, we give examples where our invariant matches the expected answer in cases where the cycle is non-reduced, non-planar, or non-primitive.

Summary

We haven't generated a summary for this paper yet.