Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bergman kernel and hyperconvexity index (1610.07016v3)

Published 22 Oct 2016 in math.CV

Abstract: Let $\Omega\subset {\mathbb C}n$ be a bounded domain with the hyperconvexity index $\alpha(\Omega)>0$. Let $\varrho$ be the relative extremal function of a fixed closed ball in $\Omega$ and set $\mu:=|\varrho|(1+|\log|\varrho||){-1}$, $\nu:=|\varrho|(1+|\log|\varrho||)n$. We obtain the following estimates for the Bergman kernel: (1) For every $0<\alpha<\alpha(\Omega)$ and $2\le p<2+\frac{2\alpha(\Omega)}{2n-\alpha(\Omega)}$, there exists a constant $C>0$ such that $\int_\Omega |\frac{K_\Omega(\cdot,w)}{\sqrt{K_\Omega(w)}}|{p}\le C |\mu(w)|{-\frac{(p-2) n}\alpha}$ for all $w\in \Omega$. (2) For every $0<r\<1$, there exists a constant $C\>0$ such that $ \frac{|K_\Omega(z,w)|2}{K_\Omega(z)K_\Omega(w)}\le C (\min{\frac{\nu(z)}{\mu(w)},\frac{\nu(w)}{\mu(z)}})r $ for all $z,w\in \Omega$. Various application of these estimates are given.

Summary

We haven't generated a summary for this paper yet.