Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimally convergent HDG method for third-order Korteweg-de Vries type equations (1610.06968v3)

Published 21 Oct 2016 in math.NA

Abstract: We develop and analyze a new hybridizable discontinuous Galerkin (HDG) method for solving third-order Korteweg-de Vries type equations. The approximate solutions are defined by a discrete version of a characterization of the exact solution in terms of the solutions to local problems on each element which are patched together through transmission conditions on element interfaces. We prove that the semi-discrete scheme is stable with proper choices of stabilization function in the numerical traces. For the linearized equation, we carry out error analysis and show that the approximations to the exact solution and its derivatives have optimal convergence rates. In numerical experiments, we use an implicit scheme for time discretization and the Newton-Raphson method for solving systems of nonlinear equations, and observe optimal convergence rates for both the linear and the nonlinear third-order equations.

Summary

We haven't generated a summary for this paper yet.