Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Training Approaches for Discriminative Segmental Models (1610.06700v1)

Published 21 Oct 2016 in cs.CL, cs.LG, and stat.ML

Abstract: Recent work on discriminative segmental models has shown that they can achieve competitive speech recognition performance, using features based on deep neural frame classifiers. However, segmental models can be more challenging to train than standard frame-based approaches. While some segmental models have been successfully trained end to end, there is a lack of understanding of their training under different settings and with different losses. We investigate a model class based on recent successful approaches, consisting of a linear model that combines segmental features based on an LSTM frame classifier. Similarly to hybrid HMM-neural network models, segmental models of this class can be trained in two stages (frame classifier training followed by linear segmental model weight training), end to end (joint training of both frame classifier and linear weights), or with end-to-end fine-tuning after two-stage training. We study segmental models trained end to end with hinge loss, log loss, latent hinge loss, and marginal log loss. We consider several losses for the case where training alignments are available as well as where they are not. We find that in general, marginal log loss provides the most consistent strong performance without requiring ground-truth alignments. We also find that training with dropout is very important in obtaining good performance with end-to-end training. Finally, the best results are typically obtained by a combination of two-stage training and fine-tuning.

Citations (7)

Summary

We haven't generated a summary for this paper yet.