Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Price of Stability of Undirected Multicast Games (1610.06515v1)

Published 20 Oct 2016 in cs.DS

Abstract: In multicast network design games, a set of agents choose paths from their source locations to a common sink with the goal of minimizing their individual costs, where the cost of an edge is divided equally among the agents using it. Since the work of Anshelevich et al. (FOCS 2004) that introduced network design games, the main open problem in this field has been the price of stability (PoS) of multicast games. For the special case of broadcast games (every vertex is a terminal, i.e., has an agent), a series of works has culminated in a constant upper bound on the PoS (Bilo` et al., FOCS 2013). However, no significantly sub-logarithmic bound is known for multicast games. In this paper, we make progress toward resolving this question by showing a constant upper bound on the PoS of multicast games for quasi-bipartite graphs. These are graphs where all edges are between two terminals (as in broadcast games) or between a terminal and a nonterminal, but there is no edge between nonterminals. This represents a natural class of intermediate generality between broadcast and multicast games. In addition to the result itself, our techniques overcome some of the fundamental difficulties of analyzing the PoS of general multicast games, and are a promising step toward resolving this major open problem.

Citations (6)

Summary

We haven't generated a summary for this paper yet.