Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the characterization of abelian varieties for log pairs in zero and positive characteristic (1610.05630v2)

Published 18 Oct 2016 in math.AG

Abstract: Let $(X,\Delta)$ be a pair. We study how the condition $\kappa(K_X + \Delta)=0$ causes surjectivity or birationality of the Albanese map and the Albanese morphism of $X$ in both characteristic $0$ and characteristic $p > 0$. In particular in characteristic $0$ we generalize Kawamata's result to the cases of log canonial pairs, and in characteristic $p>0$ we generalize a result of Hacon-Patakfalvi to the cases of log pairs. Moreover we show that if $X$ is a normal projective threefold in characteristic $p>0$, the coefficients of the components of $\Delta$ are $\le 1$ and $-(K_X+\Delta)$ is semiample, then the Albanese morphism of $X$ is surjective under reasonable assumptions on $p$ and the singularities of the general fibers of the Albanese morphism. This is a positive characteristic analog in dimension 3 of a result of Zhang on a conjecture of Demailly-Peternell-Schneider.

Summary

We haven't generated a summary for this paper yet.