Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A probabilistic model for the numerical solution of initial value problems (1610.05261v3)

Published 17 Oct 2016 in math.NA, cs.LG, and stat.ML

Abstract: Like many numerical methods, solvers for initial value problems (IVPs) on ordinary differential equations estimate an analytically intractable quantity, using the results of tractable computations as inputs. This structure is closely connected to the notion of inference on latent variables in statistics. We describe a class of algorithms that formulate the solution to an IVP as inference on a latent path that is a draw from a Gaussian process probability measure (or equivalently, the solution of a linear stochastic differential equation). We then show that certain members of this class are connected precisely to generalized linear methods for ODEs, a number of Runge--Kutta methods, and Nordsieck methods. This probabilistic formulation of classic methods is valuable in two ways: analytically, it highlights implicit prior assumptions favoring certain approximate solutions to the IVP over others, and gives a precise meaning to the old observation that these methods act like filters. Practically, it endows the classic solvers with `docking points' for notions of uncertainty and prior information about the initial value, the value of the ODE itself, and the solution of the problem.

Citations (78)

Summary

We haven't generated a summary for this paper yet.