Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-temporal Co-Occurrence Characterizations for Human Action Classification (1610.05174v1)

Published 2 Aug 2016 in cs.CV

Abstract: The human action classification task is a widely researched topic and is still an open problem. Many state-of-the-arts approaches involve the usage of bag-of-video-words with spatio-temporal local features to construct characterizations for human actions. In order to improve beyond this standard approach, we investigate the usage of co-occurrences between local features. We propose the usage of co-occurrences information to characterize human actions. A trade-off factor is used to define an optimal trade-off between vocabulary size and classification rate. Next, a spatio-temporal co-occurrence technique is applied to extract co-occurrence information between labeled local features. Novel characterizations for human actions are then constructed. These include a vector quantized correlogram-elements vector, a highly discriminative PCA (Principal Components Analysis) co-occurrence vector and a Haralick texture vector. Multi-channel kernel SVM (support vector machine) is utilized for classification. For evaluation, the well known KTH as well as the challenging UCF-Sports action datasets are used. We obtained state-of-the-arts classification performance. We also demonstrated that we are able to fully utilize co-occurrence information, and improve the standard bag-of-video-words approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)

Summary

We haven't generated a summary for this paper yet.