Papers
Topics
Authors
Recent
2000 character limit reached

Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications

Published 15 Oct 2016 in math.CO | (1610.04744v4)

Abstract: The Naruse hook-length formula is a recent general formula for the number of standard Young tableaux of skew shapes, given as a positive sum over excited diagrams of products of hook-lengths. In 2015 we gave two different $q$-analogues of Naruse's formula: for the skew Schur functions, and for counting reverse plane partitions of skew shapes. In this paper we give an elementary proof of Naruse's formula based on the case of border strips. For special border strips, we obtain curious new formulas for the Euler and $q$-Euler numbers in terms of certain Dyck path summations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.