Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification (1610.03774v4)

Published 12 Oct 2016 in stat.ML, cs.DS, and cs.LG

Abstract: This work characterizes the benefits of averaging schemes widely used in conjunction with stochastic gradient descent (SGD). In particular, this work provides a sharp analysis of: (1) mini-batching, a method of averaging many samples of a stochastic gradient to both reduce the variance of the stochastic gradient estimate and for parallelizing SGD and (2) tail-averaging, a method involving averaging the final few iterates of SGD to decrease the variance in SGD's final iterate. This work presents non-asymptotic excess risk bounds for these schemes for the stochastic approximation problem of least squares regression. Furthermore, this work establishes a precise problem-dependent extent to which mini-batch SGD yields provable near-linear parallelization speedups over SGD with batch size one. This allows for understanding learning rate versus batch size tradeoffs for the final iterate of an SGD method. These results are then utilized in providing a highly parallelizable SGD method that obtains the minimax risk with nearly the same number of serial updates as batch gradient descent, improving significantly over existing SGD methods. A non-asymptotic analysis of communication efficient parallelization schemes such as model-averaging/parameter mixing methods is then provided. Finally, this work sheds light on some fundamental differences in SGD's behavior when dealing with agnostic noise in the (non-realizable) least squares regression problem. In particular, the work shows that the stepsizes that ensure minimax risk for the agnostic case must be a function of the noise properties. This paper builds on the operator view of analyzing SGD methods, introduced by Defossez and Bach (2015), followed by developing a novel analysis in bounding these operators to characterize the excess risk. These techniques are of broader interest in analyzing computational aspects of stochastic approximation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Prateek Jain (131 papers)
  2. Sham M. Kakade (88 papers)
  3. Rahul Kidambi (21 papers)
  4. Praneeth Netrapalli (72 papers)
  5. Aaron Sidford (122 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com