Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimistic Semi-supervised Least Squares Classification (1610.03713v1)

Published 12 Oct 2016 in stat.ML and cs.LG

Abstract: The goal of semi-supervised learning is to improve supervised classifiers by using additional unlabeled training examples. In this work we study a simple self-learning approach to semi-supervised learning applied to the least squares classifier. We show that a soft-label and a hard-label variant of self-learning can be derived by applying block coordinate descent to two related but slightly different objective functions. The resulting soft-label approach is related to an idea about dealing with missing data that dates back to the 1930s. We show that the soft-label variant typically outperforms the hard-label variant on benchmark datasets and partially explain this behaviour by studying the relative difficulty of finding good local minima for the corresponding objective functions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.