Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual virtual element method for discrete fractures networks (1610.02905v2)

Published 10 Oct 2016 in math.NA

Abstract: Discrete fracture networks is a key ingredient in the simulation of physical processes which involve fluid flow in the underground, when the surrounding rock matrix is considered impervious. In this paper we present two different models to compute the pressure field and Darcy velocity in the system. The first allows a normal flow out of a fracture at the intersections, while the second grants also a tangential flow along the intersections. For the numerical discretization, we use the mixed virtual finite element method as it is known to handle grid elements of, almost, any arbitrary shape. The flexibility of the discretization allows us to loosen the requirements on grid construction, and thus significantly simplify the flow discretization compared to traditional discrete fracture network models. A coarsening algorithm, from the algebraic multigrid literature, is also considered to further speed up the computation. The performance of the method is validated by numerical experiments.

Summary

We haven't generated a summary for this paper yet.