Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SaberLDA: Sparsity-Aware Learning of Topic Models on GPUs (1610.02496v2)

Published 8 Oct 2016 in cs.DC, cs.IR, cs.LG, and stat.ML

Abstract: Latent Dirichlet Allocation (LDA) is a popular tool for analyzing discrete count data such as text and images. Applications require LDA to handle both large datasets and a large number of topics. Though distributed CPU systems have been used, GPU-based systems have emerged as a promising alternative because of the high computational power and memory bandwidth of GPUs. However, existing GPU-based LDA systems cannot support a large number of topics because they use algorithms on dense data structures whose time and space complexity is linear to the number of topics. In this paper, we propose SaberLDA, a GPU-based LDA system that implements a sparsity-aware algorithm to achieve sublinear time complexity and scales well to learn a large number of topics. To address the challenges introduced by sparsity, we propose a novel data layout, a new warp-based sampling kernel, and an efficient sparse count matrix updating algorithm that improves locality, makes efficient utilization of GPU warps, and reduces memory consumption. Experiments show that SaberLDA can learn from billions-token-scale data with up to 10,000 topics, which is almost two orders of magnitude larger than that of the previous GPU-based systems. With a single GPU card, SaberLDA is able to learn 10,000 topics from a dataset of billions of tokens in a few hours, which is only achievable with clusters with tens of machines before.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kaiwei Li (4 papers)
  2. Jianfei Chen (63 papers)
  3. Wenguang Chen (21 papers)
  4. Jun Zhu (426 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.