Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizations of Lie Higher Derivations on J-Subspace Lattice Algebras (1610.02188v1)

Published 7 Oct 2016 in math.RA and math.OA

Abstract: Let $\mathcal{L}$ be a $\mathcal{J}$-subspace lattice on a Banach space $X$ over the real or complex field $\mathbb{F}$ and $ \mathrm{Alg}\mathcal{L}$ be the associated $\mathcal{J}$-subspace lattice algebras. In this paper, we characterize the structure of a family ${L_n}{n=0}{\infty}: \mathrm{Alg}\mathcal{L}\rightarrow \mathrm{Alg}\mathcal{L}$ of linear mappings satisfying the condition $$L_n([A, B])=\sum{i+j=n}[L_i(A), L_j(B)]$$ for any $A, B\in\mathrm{Alg}\mathcal{L}$ with $AB = 0$. Moreover, the family ${L_n}{n=0}{\infty}: \mathrm{Alg}\mathcal{L}\rightarrow \mathrm{Alg}\mathcal{L}$ of linear mappings satisfying $L_n([A, B]{\xi})=\sum_{i+j=n}[L_i(A), L_j(B)]_{\xi}$ for any $A, B\in\mathrm{Alg}\mathcal{L}$ with $AB = 0$ and $1\neq \xi\in \mathbb{F}$ is also considered in the current work.

Summary

We haven't generated a summary for this paper yet.