Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph (1610.01836v2)

Published 6 Oct 2016 in math.SP, math.CO, and math.PR

Abstract: We consider the random Markov matrix obtained by assigning i.i.d. non-negative weights to each edge of the complete oriented graph. In this study, the weights have unbounded first moment and belong to the domain of attraction of an alpha-stable law. We prove that as the dimension tends to infinity, the empirical measure of the singular values tends to a probability measure which depends only on alpha, characterized as the expected value of the spectral measure at the root of a weighted random tree. The latter is a generalized two-stage version of the Poisson weighted infinite tree (PWIT) introduced by David Aldous. Under an additional smoothness assumption, we show that the empirical measure of the eigenvalues tends to a non-degenerate isotropic probability measure depending only on alpha and supported on the unit disc of the complex plane. We conjecture that the limiting support is actually formed by a strictly smaller disc.

Summary

We haven't generated a summary for this paper yet.