Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marginally Interpretable Generalized Linear Mixed Models (1610.01526v2)

Published 5 Oct 2016 in stat.ME

Abstract: Two popular approaches for relating correlated measurements of a non-Gaussian response variable to a set of predictors are to fit a marginal model using generalized estimating equations and to fit a generalized linear mixed model by introducing latent random variables. The first approach is effective for parameter estimation, but leaves one without a formal model for the data with which to assess quality of fit or make predictions for future observations. The second approach overcomes the deficiencies of the first, but leads to parameter estimates that must be interpreted conditional on the latent variables. Further complicating matters, obtaining marginal summaries from a generalized linear mixed model often requires evaluation of an analytically intractable integral or use of attenuation factors that are not exact. We define a class of marginally interpretable generalized linear mixed models that lead to parameter estimates with a marginal interpretation while maintaining the desirable statistical properties of a conditionally-specified model. We discuss the form of these models under various common link functions and also address computational issues associated with these models. For logistic mixed effects models, we introduce an accurate and efficient method for evaluating the logistic-normal integral.

Summary

We haven't generated a summary for this paper yet.