Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying geometric measure of entanglement by mean value of spin and spin correlations for pure and mixed states

Published 5 Oct 2016 in quant-ph | (1610.01432v1)

Abstract: We quantify the geometric measure of entanglement in terms of mean values of observables of entangled system. For pure states we find the relation of geometric measure of entanglement with the mean value of spin one-half for the system composed of spin and arbitrary quantum system. The geometric measure of entanglement for mixed states of rank-2 is studied as well. We find the explicit expression for geometric entanglement and the relation of entanglement in this case with the values of spin correlations. These results allow to find experimentally the value of entanglement by measuring a value of the mean spin and the spin correlations for pure and mixed states, respectively. The obtained results are applied for calculation of entanglement during the evolution in spin chain with Ising interaction , two-spin Ising model in transverse fluctuating magnetic field, Schr\"odinger cat in fluctuating magnetic field.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.