Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards semi-episodic learning for robot damage recovery (1610.01407v1)

Published 5 Oct 2016 in cs.RO, cs.AI, and cs.NE

Abstract: The recently introduced Intelligent Trial and Error algorithm (IT&E) enables robots to creatively adapt to damage in a matter of minutes by combining an off-line evolutionary algorithm and an on-line learning algorithm based on Bayesian Optimization. We extend the IT&E algorithm to allow for robots to learn to compensate for damages while executing their task(s). This leads to a semi-episodic learning scheme that increases the robot's lifetime autonomy and adaptivity. Preliminary experiments on a toy simulation and a 6-legged robot locomotion task show promising results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.