Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New hallmarks of criticality in recurrent neural networks (1610.01217v2)

Published 4 Oct 2016 in q-bio.NC

Abstract: A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at criticality. How operating near this network state impacts the variability of neuronal spiking is largely unknown. Here we show in a computational model that two prevalent features of cortical single-neuron activity, irregular spiking and the decline of response variability at stimulus onset, are both emergent properties of a recurrent network operating near criticality. Importantly, our work reveals that the relation between the irregularity of spiking and the number of input connections to a neuron, i.e., the in-degree, is maximized at criticality. Our findings establish criticality as a unifying principle for the variability of single-neuron spiking and the collective behavior of recurrent circuits in cerebral cortex.

Summary

We haven't generated a summary for this paper yet.