Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential utility maximization under model uncertainty for unbounded endowments (1610.00999v3)

Published 4 Oct 2016 in q-fin.PM and math.OC

Abstract: We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of nondominated probabilistic models of her endowment by dynamically investing in a financial market, and statically in available options. We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of (calibrated) martingale measures holds true, and that the problem satisfies the dynamic programming principle (in case of no options). Further it is shown that the value of the utility maximization problem converges to the robust superhedging price as the risk aversion parameter gets large, and examples of nondominated probabilistic models are discussed.

Summary

We haven't generated a summary for this paper yet.