Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real Time Fine-Grained Categorization with Accuracy and Interpretability (1610.00824v1)

Published 4 Oct 2016 in cs.CV

Abstract: A well-designed fine-grained categorization system usually has three contradictory requirements: accuracy (the ability to identify objects among subordinate categories); interpretability (the ability to provide human-understandable explanation of recognition system behavior); and efficiency (the speed of the system). To handle the trade-off between accuracy and interpretability, we propose a novel "Deeper Part-Stacked CNN" architecture armed with interpretability by modeling subtle differences between object parts. The proposed architecture consists of a part localization network, a two-stream classification network that simultaneously encodes object-level and part-level cues, and a feature vectors fusion component. Specifically, the part localization network is implemented by exploring a new paradigm for key point localization that first samples a small number of representable pixels and then determine their labels via a convolutional layer followed by a softmax layer. We also use a cropping layer to extract part features and propose a scale mean-max layer for feature fusion learning. Experimentally, our proposed method outperform state-of-the-art approaches both in part localization task and classification task on Caltech-UCSD Birds-200-2011. Moreover, by adopting a set of sharing strategies between the computation of multiple object parts, our single model is fairly efficient running at 32 frames/sec.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shaoli Huang (37 papers)
  2. Dacheng Tao (829 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.