Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigidity of Bott-Samelson-Demazure-Hansen variety for $PSp(2n, \mathbb C)$ (1610.00812v1)

Published 4 Oct 2016 in math.AG

Abstract: Let $G=PSp(2n, \mathbb C)(n\geq 3)$ and $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G$. Let $w$ be an element of the Weyl group $W$ and $X(w)$ be the Schubert variety in the flag variety $G/B$ corresponding to $w$. Let $Z(w,\underline i)$ be the Bott-Samelson-Demazure-Hansen variety (the desingularization of $X(w)$) corresponding to a reduced expression $\underline i$ of $w$. In this article, we study the cohomology groups of the tangent bundle on $Z(w_0, \underline i)$, where $w_0$ is the longest element of the Weyl group $W$. We describe all the reduced expressions $\underline i$ of $w_0$ in terms of a Coxeter element such that all the higher cohomology groups of the tangent bundle on $Z(w_0, \underline i)$ vanish.

Summary

We haven't generated a summary for this paper yet.