Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ (1610.00247v3)

Published 2 Oct 2016 in math.NT

Abstract: Let $k$ and $n$ be fixed positive integers. For each prime power $q\geqslant k\geqslant 3$, we show that any subset $A\subseteq \mathbb{Z}_qn$ free of $k$-term arithmetic progressions has size $|A|\leqslant c_k(q)n$ with a constant $c_k(q)$ that can be expressed explicitly in terms of $k$ and $q$. As a consequence, we can take $c_k(q)=0.8415q$ for sufficiently large $q$ and arbitrarily fixed $k\geq 3$.

Summary

We haven't generated a summary for this paper yet.