Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

System Identification of NN-based Model Reference Control of RUAV during Hover (1610.00089v1)

Published 1 Oct 2016 in cs.SY

Abstract: UAV control system is a huge and complex system, and to design and test a UAV control system is time-cost and money-cost. This paper considered the simulation of identification of a nonlinear system dynamics using artificial neural networks approach. This experiment develops a neural network model of the plant that we want to control. In the control design stage, experiment uses the neural network plant model to design (or train) the controller. We use Matlab to train the network and simulate the behavior. This chapter provides the mathematical overview of MRC technique and neural network architecture to simulate nonlinear identification of UAV systems. MRC provides a direct and effective method to control a complex system without an equation-driven model. NN approach provides a good framework to implement MEC by identifying complicated models and training a controller for it.

Citations (8)

Summary

We haven't generated a summary for this paper yet.