Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

The choice of effect measure for binary outcomes: Introducing counterfactual outcome state transition parameters (1610.00069v6)

Published 1 Oct 2016 in stat.ME

Abstract: Standard measures of effect, including the risk ratio, the odds ratio, and the risk difference, are associated with a number of well-described shortcomings, and no consensus exists about the conditions under which investigators should choose one effect measure over another. In this paper, we introduce a new framework for reasoning about choice of effect measure by linking two separate versions of the risk ratio to a counterfactual causal model. In our approach, effects are defined in terms of "counterfactual outcome state transition parameters", that is, the proportion of those individuals who would not have been a case by the end of follow-up if untreated, who would have responded to treatment by becoming a case; and the proportion of those individuals who would have become a case by the end of follow-up if untreated who would have responded to treatment by not becoming a case. Although counterfactual outcome state transition parameters are generally not identified from the data without strong monotonicity assumptions, we show that when they stay constant between populations, there are important implications for model specification, meta-analysis, and research generalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.