Papers
Topics
Authors
Recent
2000 character limit reached

On Identification of Sparse Multivariable ARX Model: A Sparse Bayesian Learning Approach

Published 30 Sep 2016 in cs.SY, cs.LG, and stat.ML | (1609.09660v1)

Abstract: This paper begins with considering the identification of sparse linear time-invariant networks described by multivariable ARX models. Such models possess relatively simple structure thus used as a benchmark to promote further research. With identifiability of the network guaranteed, this paper presents an identification method that infers both the Boolean structure of the network and the internal dynamics between nodes. Identification is performed directly from data without any prior knowledge of the system, including its order. The proposed method solves the identification problem using Maximum a posteriori estimation (MAP) but with inseparable penalties for complexity, both in terms of element (order of nonzero connections) and group sparsity (network topology). Such an approach is widely applied in Compressive Sensing (CS) and known as Sparse Bayesian Learning (SBL). We then propose a novel scheme that combines sparse Bayesian and group sparse Bayesian to efficiently solve the problem. The resulted algorithm has a similar form of the standard Sparse Group Lasso (SGL) while with known noise variance, it simplifies to exact re-weighted SGL. The method and the developed toolbox can be applied to infer networks from a wide range of fields, including systems biology applications such as signaling and genetic regulatory networks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.