Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Lee weight and two-Lee weight $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes (1609.09588v3)

Published 30 Sep 2016 in math.RA, cs.IT, and math.IT

Abstract: In this paper, we study one-Lee weight and two-Lee weight codes over $\mathbb{Z}{2}\mathbb{Z}{2}[u]$, where $u{2}=0$. Some properties of one-Lee weight $\mathbb{Z}{2}\mathbb{Z}{2}[u]$-additive codes are given, and a complete classification of one-Lee weight $\mathbb{Z}2\mathbb{Z}_2[u]$-additive formally self-dual codes is obtained. The structure of two-Lee weight projective $\mathbb{Z}_2\mathbb{Z}_2[u]$ codes is determined. Some optimal binary linear codes are obtained directly from one-Lee weight and two-Lee weight $\mathbb{Z}{2}\mathbb{Z}_{2}[u]$-additive codes via the extended Gray map.

Citations (1)

Summary

We haven't generated a summary for this paper yet.