Papers
Topics
Authors
Recent
Search
2000 character limit reached

Digitizing Municipal Street Inspections Using Computer Vision

Published 30 Sep 2016 in cs.CY and cs.CV | (1609.09582v1)

Abstract: "People want an authority to tell them how to value things. But they chose this authority not based on facts or results. They chose it because it seems authoritative and familiar." - The Big Short The pavement condition index is one such a familiar measure used by many US cities to measure street quality and justify billions of dollars spent every year on street repair. These billion-dollar decisions are based on evaluation criteria that are subjective and not representative. In this paper, we build upon our initial submission to D4GX 2015 that approaches this problem of information asymmetry in municipal decision-making. We describe a process to identify street-defects using computer vision techniques on data collected using the Street Quality Identification Device (SQUID). A User Interface to host a large quantity of image data towards digitizing the street inspection process and enabling actionable intelligence for a core public service is also described. This approach of combining device, data and decision-making around street repair enables cities make targeted decisions about street repair and could lead to an anticipatory response which can result in significant cost savings. Lastly, we share lessons learnt from the deployment of SQUID in the city of Syracuse, NY.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.