Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A C^0 counterexample to the Arnold conjecture (1609.09192v1)

Published 29 Sep 2016 in math.SG and math.DS

Abstract: The Arnold conjecture states that a Hamiltonian diffeomorphism of a closed and connected symplectic manifold must have at least as many fixed points as the minimal number of critical points of a smooth function on the manifold. It is well known that the Arnold conjecture holds for Hamiltonian homeomorphisms of closed symplectic surfaces. The goal of this paper is to provide a counterexample to the Arnold conjecture for Hamiltonian homeomorphisms in dimensions four and higher. More precisely, we prove that every closed and connected symplectic manifold of dimension at least four admits a Hamiltonian homeomorphism with a single fixed point.

Summary

We haven't generated a summary for this paper yet.