Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Discrete Supervised Hash Learning with Asymmetric Matrix Factorization (1609.08740v1)

Published 28 Sep 2016 in cs.CV

Abstract: Hashing method maps similar data to binary hashcodes with smaller hamming distance, and it has received a broad attention due to its low storage cost and fast retrieval speed. However, the existing limitations make the present algorithms difficult to deal with large-scale datasets: (1) discrete constraints are involved in the learning of the hash function; (2) pairwise or triplet similarity is adopted to generate efficient hashcodes, resulting both time and space complexity are greater than O(n2). To address these issues, we propose a novel discrete supervised hash learning framework which can be scalable to large-scale datasets. First, the discrete learning procedure is decomposed into a binary classifier learning scheme and binary codes learning scheme, which makes the learning procedure more efficient. Second, we adopt the Asymmetric Low-rank Matrix Factorization and propose the Fast Clustering-based Batch Coordinate Descent method, such that the time and space complexity is reduced to O(n). The proposed framework also provides a flexible paradigm to incorporate with arbitrary hash function, including deep neural networks and kernel methods. Experiments on large-scale datasets demonstrate that the proposed method is superior or comparable with state-of-the-art hashing algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shifeng Zhang (48 papers)
  2. Jianmin Li (43 papers)
  3. Jinma Guo (2 papers)
  4. Bo Zhang (633 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.