Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Separations in the Energy Complexity of Leader Election (1609.08486v3)

Published 27 Sep 2016 in cs.DC, cs.CC, and cs.DS

Abstract: Energy is often the most constrained resource for battery-powered wireless devices and the lion's share of energy is often spent on transceiver usage (sending/receiving packets), not on computation. In this paper we study the energy complexity of LeaderElection and ApproximateCounting in several models of wireless radio networks. It turns out that energy complexity is very sensitive to whether the devices can generate random bits and their ability to detect collisions. We consider four collision-detection models: Strong-CD (in which transmitters and listeners detect collisions), Sender-CD and Receiver-CD (in which only transmitters or only listeners detect collisions), and No-CD (in which no one detects collisions.) The take-away message of our results is quite surprising. For randomized LeaderElection algorithms, there is an exponential gap between the energy complexity of Sender-CD and Receiver-CD, and for deterministic LeaderElection algorithms there is another exponential gap, but in the reverse direction. In particular, the randomized energy complexity of LeaderElection is $\Theta(\log* n)$ in Sender-CD but $\Theta(\log(\log* n))$ in Receiver-CD, where $n$ is the (unknown) number of devices. Its deterministic complexity is $\Theta(\log N)$ in Receiver-CD but $\Theta(\log\log N)$ in Sender-CD, where $N$ is the (known) size of the devices' ID space. There is a tradeoff between time and energy. We give a new upper bound on the time-energy tradeoff curve for randomized LeaderElection and ApproximateCounting. A critical component of this algorithm is a new deterministic LeaderElection algorithm for dense instances, when $n=\Theta(N)$, with inverse-Ackermann-type ($O(\alpha(N))$) energy complexity.

Citations (42)

Summary

We haven't generated a summary for this paper yet.