Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-complexity Image and Video Coding Based on an Approximate Discrete Tchebichef Transform (1609.07630v4)

Published 24 Sep 2016 in cs.MM, cs.CV, cs.DS, stat.CO, and stat.ME

Abstract: The usage of linear transformations has great relevance for data decorrelation applications, like image and video compression. In that sense, the discrete Tchebichef transform (DTT) possesses useful coding and decorrelation properties. The DTT transform kernel does not depend on the input data and fast algorithms can be developed to real time applications. However, the DTT fast algorithm presented in literature possess high computational complexity. In this work, we introduce a new low-complexity approximation for the DTT. The fast algorithm of the proposed transform is multiplication-free and requires a reduced number of additions and bit-shifting operations. Image and video compression simulations in popular standards shows good performance of the proposed transform. Regarding hardware resource consumption for FPGA shows 43.1% reduction of configurable logic blocks and ASIC place and route realization shows 57.7% reduction in the area-time figure when compared with the 2-D version of the exact DTT.

Citations (47)

Summary

We haven't generated a summary for this paper yet.