2000 character limit reached
On the Sum of Divisors of Mixed Powers (1609.07610v1)
Published 24 Sep 2016 in math.NT
Abstract: Let $d(n)$ denote the Dirichlet divisor function. Define \begin{equation*} \mathcal{S}{k}(x)=\sum{\substack{1\leqslant n_1,n_2,n_3 \leqslant x{1/2} \ 1\leqslant n_4\leqslant x{1/k} }} d(n_12+n_22+n_32+n_4k), \qquad 3\leqslant k\in \mathbb{N}. \end{equation*} In this paper, we establish an asymptotic formula of $\mathcal{S}_k(x)$ and prove that \begin{equation*} \mathcal{S}_k(x)=C_1(k)x{3/2+1/k}\log x+C_2(k)x{3/2+1/k}+O(x{3/2+1/k-\delta_k+\varepsilon}), \end{equation*} where $C_1(k),\,C_2(k)$ are two constants depending only on $k,$ with $\delta_3=\frac{19}{60},\,\delta_4=\frac{5}{24},\,\delta_5=\frac{19}{140},\,\delta_6=\frac{25}{192},\, \delta_7=\frac{457}{4032},\,\delta_k=\frac{1}{k+2}+\frac{1}{2k2(k-1)}$ for $k\geqslant8.$